Bifurcations in Symplectic Space

نویسنده

  • G. ISHIKAWA
چکیده

In this paper we take new steps in the theory of symplectic and isotropic bifurcations, by solving the classification problem under a natural equivalence in several typical cases. Moreover we define the notion of coisotropic varieties and formulate also the coisotropic bifurcation problem. We consider several symplectic invariants of isotropic and coisotropic varieties, providing illustrative examples in the simplest non-trivial cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sufficient condition for the existence of Hamiltonian bifurcations with continuous isotropy

We present a framework for the study of the local qualitative dynamics of equivariant Hamiltonian flows specially designed for points in phase space with nontrivial isotropy. This is based on the classical construction of structure-preserving tubular neighborhoods for Hamiltonian Lie group actions on symplectic manifolds. This framework is applied to obtaining concrete and testable conditions g...

متن کامل

Relative periodic points of symplectic maps: persistence and bifurcations

In this paper we study symplectic maps with a continuous symmetry group arising by periodic forcing of symmetric Hamiltonian systems. By Noether’s Theorem, for each continuous symmetry the symplectic map has a conserved momentum. We study the persistence of relative periodic points of the symplectic map when momentum is varied and also treat subharmonic persistence and relative subharmonic bifu...

متن کامل

Noise-induced escape from bifurcating attractors: Symplectic approach in the weak-noise limit.

The effect of noise is studied in one-dimensional maps undergoing transcritical, tangent, and pitchfork bifurcations. The attractors of the noiseless map become metastable states in the presence of noise. In the weak-noise limit, a symplectic two-dimensional map is associated with the original one-dimensional map. The consequences of their noninvertibility on the phase-space structures are disc...

متن کامل

Invariant curves near Hamiltonian Hopf bifurcations of D symplectic maps

In this paper we give a numerical description of the neighbourhood of a xed point of a symplectic map undergoing a transition from linear stability to complex instability i e the so called Hamiltonian Hopf bifurcation We have considered both the direct and inverse cases The study is based on the numerical computation of the Lyapunov families of invariant curves near the xed point We show how th...

متن کامل

Maximal prehomogeneous subspaces on classical groups

Suppose $G$ is a split connected‎ ‎reductive orthogonal or symplectic group over an infinite field‎ ‎$F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is‎ ‎the Lie algebra of the unipotent radical $N.$ Under the adjoint‎ ‎action of its stabilizer in $M,$ every maximal prehomogeneous‎ ‎subspaces of $frak{n}$ is determined‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008